Ex 2. Under appropriate laboratory conditions the temperature $T^{\circ} C$ of a beaker of a chemical solution and the temperature $S^{\circ} C$ of a surrounding vat of cooler water satisfy according to Newton's Law of cooling:

$$
\begin{align*}
\frac{d T}{d t} & =-k(T-S) \quad \text { where } k>0 \tag{1}\\
\frac{d S}{d t} & =0.75 k(T-S) \tag{2}
\end{align*}
$$

(a) Show that $\frac{3}{4} \cdot \frac{d T}{d t}+\frac{d S}{d t}=0$ and hence deduce the result for $\frac{3}{4} T+S$.

Solution: $\quad L H S=\frac{3}{4} \cdot \frac{d T}{d t}+\frac{d S}{d t}=-\frac{3}{4} k(T-S)+0.75 k(T-S)=0$

$$
\begin{aligned}
& \int_{0}^{t}\left(\frac{3}{4} \frac{d T}{d t}+\frac{d S}{d t}\right) d t=0 \\
& {\left[\frac{3}{4} T+S\right]_{0}^{t}=\left[\frac{3}{4} T+S\right]-\left[\frac{3}{4} T_{0}+S_{0}\right]=0} \\
& \frac{3}{4} T+S=\frac{3}{4} T_{0}+S_{0}
\end{aligned}
$$

(b) Find an expression for $\frac{d T}{d t}$ in terms of T, and hence show that $T=\frac{4}{7} C+A e^{-\frac{7}{4} k t}$, where C and A are constants, satisfies this differential equation for any constant A.
Solution: From (a) $\frac{d S}{d t}=-\frac{3}{4} \frac{d T}{d t}$

$$
\begin{aligned}
\frac{d^{2} T}{d t^{2}} & =\frac{d}{d t}\left(\frac{d T}{d t}\right)=\frac{d}{d t}[-k(T-S)]=-k\left(\frac{d T}{d t}-\frac{d S}{d t}\right)=-k\left(\frac{d T}{d t}+\frac{3}{4} \frac{d T}{d t}\right)=-\frac{7}{4} k \cdot \frac{d T}{d t} \\
\frac{d T}{d t} & =\int\left(-\frac{7}{4} k \cdot \frac{d T}{d t}\right) d t=-k\left(\frac{7}{4} T-C\right)=-\frac{7}{4} k\left(T-\frac{4}{7} C\right) \\
\therefore \quad \frac{d T}{d t} & =-\frac{7}{4} k\left(T-\frac{4}{7} C\right)
\end{aligned}
$$

Given $T=\frac{4}{7} C+A e^{-\frac{7}{4} k t}$,
$\frac{d T}{d t}=A \frac{d}{d t} e^{-\frac{7}{4} k t}=-\frac{7}{4} k A e^{-\frac{7}{4} k t}=-\frac{7}{4} k\left(T-\frac{4}{7} C\right), \quad$ which satisfies the differential equation.
(c) \ldots

Ex 1. A cup of coffee cools at a rate proportional to the difference between its temperatures T_{c} and that of its surroundings. In winter, the room temperature is $15^{\circ} \mathrm{C}$ and I must wait 10 minutes for my coffee to cool from $90^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
(a) Explain why: $\frac{d T_{c}}{d t}=-k\left(T_{c}-15\right)$.

Solution: Newton's Law of Cooling ...duh! $\quad(k>0)$
(b) Show that: $T_{c}=15+75\left(\frac{7}{15}\right)^{\frac{t}{10}}$

Solution: Based on the "duh" rule: $T_{c}=15+A e^{-k t}$
Given $A=90-15=75$ and when $t=10$,
$T_{c}=15+75 e^{-10 k}=50, \quad e^{-10 k}=\frac{35}{75}=\frac{7}{15}$,
$e^{-k t}=\left(e^{-10 k}\right)^{\frac{t}{10}}=\left(\frac{7}{15}\right)^{\frac{t}{10}}$,
$\therefore \quad T_{c}=15+A e^{-k t}=15+75\left(\frac{7}{15}\right)^{\frac{t}{10}}$
(c) How long must I wait, in summer, when the room temperature will be $25^{\circ} \mathrm{C}$ to cool to $50^{\circ} \mathrm{C}$?

Solution: So all the 15 is now 25 , and $A=90-25=65$.

$$
\begin{aligned}
& T_{c}=25+65 e^{-k t}=50, \quad e^{-k t}=\frac{25}{65}=\frac{5}{13}, \quad\left(\frac{7}{15}\right)^{\frac{t}{10}}=\frac{5}{13} \\
& t=10 \cdot \frac{\ln \frac{5}{13}}{\ln \frac{7}{15}}=12.54 \text { minutes }=12: 32 \text { minutes }
\end{aligned}
$$

