Ex 2. Under appropriate laboratory conditions the temperature T°C' of a beaker of a chemical
solution and the temperature S°C' of a surrounding vat of cooler water satisfy
according to Newton’s Law of cooling:
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(a) Show that i + = = 0 and hence deduce the result for ZT + 5.
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(b) Find an expression for E in terms of T, and
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hence show that T' = 70 + Ae~ ikt , where C' and A are constants,

satisfies this differential equation for any constant A.
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Given T = 70 + Ae ikt ,
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s Aae_%kt = _ZkA e ik = _Zk (T — 70) , which satisfies the differential equation.



Ex 1. A cup of coffee cools at a rate proportional to the difference between its temperatures T, and that of its surroundings.
In winter, the room temperature is 15°C' and I must wait 10 minutes for my coffee to cool from 90°C' to 50°C.
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(a) Explain why: e —k(T. —15).

Solution: Newton’s Law of Cooling ...duh! (k> 0)
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(b) Show that: T, =15+ 75 (15>

Solution: Based on the “duh” rule: T, = 15+ A e *t
Given A =90 — 15 = 75 and when t = 10,
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T.=15+Ae * =15+75 (175)

(¢) How long must I wait, in summer, when the room temperature will be 25°C' to cool to 50°C?
Solution: So all the 15 is now 25, and A = 90 — 25 = 65 .
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In 1%, . .
t=10- - = 12.54 minutes = 12 : 32 minutes
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